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ABSTRACT 

The ve loc i ty  p r o f i l e s  f o r  an i n f i n i t e ,  c y l i n d r i c a l  bear ing are 

obtained by means of a small e c c e n t r i c i t y  per turba t ion  ca lcu la t ion .  

The modified Reynolds number appears as a parameter, and ve loc i ty  

p r o f i l e s  are presented f o r  modified Reynolds numbers of 

low1, 1, 10 and 10 . 
p r o f i l e s  f o r  t he  var ious Reynolds numbers is t h e  appearance of 

components which are 90' out of phase with the  f i lm thickness  a t  the  

l a r g e r  values  of t he  modified Reynolds number, 

these components are discussed. 

loe2, 
2 The most s i g n i f i c a n t  d i f f e rence  i n  the  ve loc i ty  

The consequences of 

INTRODUCTION 

The standard technique f o r  t r e a t i n g  hydrodynamic l u b r i c a t i o n  

The problems involves a t runca t ion  of t he  Navier-Stokes equations.  

t runca t ion  is  based on the r a t i o  of bearing c learance  t o  bear ing r ad ius  

and on the  modified Reynolds number both being small. The smallness of 

clearance t o  rad ius  r a t i o  is used t o  j u s t i f y  t h e  neglec t  of d e r i v a t i v e s  

along the  bear ing sur face  compared t o  der iva t ives  normal t o  t h e  sur face ,  

. 

and t h e  smallness of t he  modified Reynoljis number j u s t i f i e s  t he  negl .ect 

\\ 

I 



c 

- 2 -  

years,  however, i n  which the modified Reynolds number is of u n i t  orde 

o r  la rger .  The standard approximations cannot be j u s t i f i e d  i n  these  

s i t u a t i o n s ,  and experience has shown t h a t  the  performance predic t ions  

based on these approximations are inadequate ( L a  

The s i g n i f i c a n t  changes i n  journa l  bearing c h a r a c t e r i s t  ~7 3 t  

increased modified Reynolds numbers may be a t t r i b u t e d  t o  th ree  

phenomenological  change^'^). 
i n e r t i a l  contr ibut ions merely become important, Secondly, t he  flow may 

F i r s t ,  t he  flow may remain laminar and 

remain laminar but  be r ad ica l ly  a l t e r ed  by the  onset  of a secondary 

flow, eg. Taylor vor t ices .  And f i n a l l y ,  the  flow may become turbulent .  

The p o s s i b i l i t y  of the  i n e r t i a l  e f f e c t s  becoming s i g n i f i c a n t  

a t  moderate values of the  modified Reynolds number has been a n a l y t i c a l l y  

inves t iga ted  by two  method^'^). 
technique. 

the  standard procedure of neglecting the  i n e r t i a l  terms, and then a 

correc t ion  is calculated by introducing these ve loc i ty  p r o f i l e s  i n t o  

the i n e r t i a l  terms of the  more complete equations.  

v , and u are the  terms obtained by neglect ing i n e r t i a ,  and 

v1 and u1 are the  cor rec t ion  tenus, then the  corresponding momentum 

equations in Cartesian coordinates are 

One method amounts t o  an i t e r a t i o n  

The ve loc i ty  and pressure p r o f i l e s  are f i r s t  determined v i a  

That is ,  i f  To , - - 
0 0 1 ’  - - 

..- 
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- - - 
v and p a r e  equivalent t o  f i r s t  order terms of Clear ly ,  u1 , 1 1 

perturbat ions expansions i n  powers of the  modified Reynolds number, 

* * * 
u = u + R e  u1 + Re 2u2 + R e  3u3 + ...... 

0 

* * 
v =  v + Re v1 + Re *v2 + ...... 

0 

* "2 + R e  p + R e  p2 + ...... P = Po 1 

The disconcert ing f a c t  is t h a t  Equations (A) and (B) have been used to  

ca l cu la t e  correct ions f o r  values of R e  up t o  f ive ,  and the  expansion 

procedure is only usefu l  f o r  Re -z 1. For Re > 1 the expansions may 

even diverge because {ul, u2,. ... I ,  {vl,v2,. .. . I  and {p1,p2,. .. . I  

are not  known a p r i o r i  t o  be rapidly diminishing sequences of funct ions.  

The o ther  method of correct ing f o r  i n e r t i a l  e f f e c t s  is by averaging 

the convective acce lera t ion  terms i n  the  momentum equations before  

* 
* * 

solving f o r  t he  ve loc i ty  and pressure p r o f i l e s .  I n  t h i s  scheme the  x 

momentum equation appears as 

where the  term i n  braces is t o  b e  estimated before solving f o r  and 
- 
u . 
u and i n  order t o  implement t h i s  scheme, and the  procedure is t o  

Some i n i t i a l  assumptions must be made regarding the  forms of 
- 

assume t h a t  and are similar t o  the  p r o f i l e s  obtained by the  

to ta l  neglect of i n e r t i a .  Neither of t h e  preceding methods w i l l  admit 
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ve loc i ty  p r o f i l e s  which d i f f e r  noticably from zero i n e r t i a  p r o f i l e s ,  

and the  f irst  method cannot be j u s t i f i e d  f o r  Re > 1 However, t h e i r  

r e s u l t s  r u l e  out the p o s s i b i l i t y  of s ign i f i can t  i n e r t i a l  e f f e c t s ,  and 

t h i s  conclusion appears to  be widely, if u n c r i t i c a l l y ,  accepted. 

* 

The p o s s i b i l i t y  of a secondary flow regime e x i s t i n g  i n  the  

bearing clearance has recent ly  been d i s c ~ s s e d ' ~ ) ,  and experiments (5 ,6 )  

are present ly  being ca r r i ed  out  to  study t h e  matter fu r the r .  However, 

no ca lcu la t ions  have been performed on the  bas i s  of a vortex regime t o  

date ,  and no apparent e f f o r t  is being made t o  formulate lub r i ca t ion  

problems i n  terms of a vortex flow. 

The idea  of a t r a n s i t i o n  to  turbulence a t  moderate values  of 

the  modified Reynolds number had a strong i n t u i t i v e  appeal,  and numerous 

ca l cu la t ions  have been ca r r i ed  out on t h i s  bas i s  (7,8,9,10). The 

imply a n  abrupt t r a n s i t i o n  similar t o  t h a t  i n  (7,8) earlier references 

pipes,  while the  lat ter papers (9s10) e x p l i c i t l y  p i c t u r e  the  t r a n s i t i o n  

region as extending over a narrow but s i g n i f i c a n t  range of modified 

Reynolds numbers. However, a l l  of the turbulen t  treatments t o  ' : [ e  

assume a s i m i l a r i t y  with turbulent  duct flows and assume t h a t  ti,: 

i n e r t i a l  terms may be neglected. 

discussed i n  reference 3, and i t  is  concluded the re in  t h a t  both are 

doubtful  a t  bes t .  

These t w o  assumptions are ex tens ive ly  

It would thus appear t h a t  t he  foundations of high speed lubr i -  

ca t ion  theory are f a r  from sa t i s f ac to ry .  

laminar f low regime have been shown to be neg l ig ib l e  by a ca l cu la t ion  

which inherent ly  assumes t h a t  they are negl ig ib le .  

The i n e r t i a l  terms f o r  a 

The formulation of 
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a theory based on a vortex regime has never been attempted, and the  

e x i s t i n g  turbulent  theor ies  introduce questionable phys ica l  assumptions. 

Clearly,  the  nature  of the  flow must be known before any progress  can 

be made. The crux of ascer ta in ing  t h e  flow regime is gaining an 

- adequate knowledge of changes i n  the ve loc i ty  p r o f i l e s  as the  modified 

Reynolds number approaches and, perhaps, exceeds uni ty .  

main goal  of the  present  work. 

This  is t he  

DESCRIPTION OF THE PROBLEM 

The t a sk  of determining the behavior of t he  ve loc i ty  p r o f i l e s  

f o r  varying Reynolds numbers is rather formidable, and some care 

must be taken i n  se l ec t ing  the  proper approach. For one thing,  

the  ana lys i s  must not preclude t h e  p o s s i b i l i t y  of changes i n  the  

bas i c  characteristics of t h e  profiles as the Reynolds number is 

increased. Such changes would ac tua l ly  be of primary i n t e r e s t .  

Moreover, the  method of exhib i t ing  the  p r o f i l e s '  dependence on t h e  

modified Reynolds number must  lead t o  t r a c t a b l e  ca lcu la t ions ,  and a 

complete so lu t ion  of t he  Navier-Stokes equations is  much too 

ambitious a projec t .  A possible  means of achieving t r a c t a b i l i t y  

without r e s t r i c t i n g  the  modified Reynolds number is  by introducing 

s o l e l y  geometric r e s t r i c t i o n s  on the class of bear ings  t o  be considered. 

Incompressible flow i n  an i n f i n i t e ,  concentr ic ,  c y l i n d r i c a l  j ou rna l  

bearing has been extensively studied by f l u i d  mechanists, and the  

knowledge of the  flow regime is ra the r  complete for low t o  moderate 

values of the  modified Reynolds number. The classical r o t a t i n g  Couette 
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flow v e l o c i t y  'p rof i les  p e r s i s t  u n t i l  the onset of Taylor v o r t i c e s  a t  

a p red ic t ab le  Reynolds number. 

but very small, t h e  flow should not deviate much from t h a t  of t h e  

concent r ic  case. 

e c c e n t r i c i t y  can be inves t iga ted  by means of a pe r tu rba t ion  scheme i n  

which t h e  per turba t ion  parameter i s  r e l a t ed  t o  t h e  e c c e n t r i c i t y .  The 

only r e s t r i c t i o n  on t he  Reynolds number is t h a t  i t  be less than t h e  

c r i t i c a l  value f o r  Taylor vo r t i ce s .  

q u a n t i t i e s  as t h e  Reynolds number va r i e s  from very low va lues ,  f o r  

which standard lub r i ca t ion  theory s u f f i c e s ,  t o  t h e  Taylor boundary 

I f  the e c c e n t r i c i t y  were non-zero, 

Assuming t h i s ,  t h e  pre-vortex p r o f i l e s  f o r  small 

I 

The behavior of the  per turba t ion  

w i l l  provide in s igh t  i n t o  t h e  changes t h a t  occur i n  genera l  l u b r i c a t i o n  

p r o f i l e s  as the  l e v e l  of i n e r t i a  is increased. 

The per turba t ion  scheme used i n  the  following ana lys i s  is w e l l  

su i t ed  t o  both a case i n  which the  sha f t  cen te r  is space f ixed  and 

a p a r t i c u l a r  case of f u l l  frequency whirl .  Since t h e  accepted method 

of analyzing s h a f t  dynamics t a c i t l y  assumes a quasi-steady t angen t i a l  

v e l o c i t y  p r o f i l e  i n  t h e  lub r i can t  film, t he  so lu t ions  f o r  an o r b i t i n g  

s h a f t  are of considerable i n t e r e s t .  A comparison of t he  per turba t ion  

v e l o c i t i e s  f o r  a s ta t ic  and a dynamic s h a f t  w i l l  provide some i n s i g h t  

I n t o  the  v a l i d i t y  of t h i s  quasi-steady assumption. 

shows marked d i f fe rences  between the pe r tu rba t ion  p r o f i l e s ,  t h i s  

would ind ica t e  a s t ronger  coupling between the  lub r i can t  f i l m  and 

the  motion of t he  s h a f t  than i s  present ly  assumed. 

cases w i l l  be considered i n  t h e  following ana lys i s .  

I f  a comparison 

Therefore, both 

. 

\ 
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The present i nves t iga t ion  d i f f e r s  from previous work in the 

f i e l d  of high-speed lub r i ca t ion  both i n  terms of goals  and method. 

Previous work has been d i r e c t l y  concerned with t h e  ca l cu la t ion  of 

performance parameters for a var i e ty  of p r a c t i c a l  bearing conf igura t ions .  

Numerous assumptions regarding the  lub r i can t  flow were used i n  car ry ing  

out these  ca l cu la t ions ,  and the  r e su l t i ng  performance p red ic t ions  are 

dependent upon the assumptions. 

understanding of t h e  f l u i d  mechanic behavior of l ub r i can t  f i lms  as 

the  Reynolds number is increased. 

The present ana lys i s  seeks only an  

In a sense, it is  concerned wi th  

the  v e l i d i t y  of the  assumptions made by previous authors. 

It has already been indicated t h a t  t he  following ana lys i s  

w i l l  be r e s t r i c t e d  t o  a simpler bearing geometry and t o  small 

e c c e n t r i c t i e s .  Due t o  t h e  small e c c e n t r i c i t y  r e s t r i c t i o n ,  t h e  r e s u l t s  

can only be used d i r e c t l y  i n  pred ic t ing  performance over a narrow 

operating range. 

importance. 

be  an t i c ipa t ed  i n  space appl ica t ions  where l i q u i d  metals are used 

as l ub r i can t s .  Since reduced gravi ty  conditions are p a r t  of t h e  

space environment, small e c c e n t r i c i t i e s  are then t o  be expected. 

Therefore, t h e  r e s t r i c t i o n s  t o  small eccentricities may'not be as 

se r ious  a p r a c t i c a l  l i m i t a t i o n  as t h e  r e s t r i c t i o n  on bearing geometry. 

However, t h i s  l imi t ed  range is of p r a c t i c a l  

Moderate values of t h e  modified Reynolds number are t o  

ANALYSIS 

The configuration of i n t e r e s t  is represented i n  f i g u r e  (1). 

It consists simply of two circles whose centers are not  q u i t e  coincident 
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and, wi th  a change i n  viewpoint, represents both t h e  case i n  which 

the inner  circle ( the  sha f t )  r o t a t e s  with a space-fixed center  and 

the  case i n  which the  center  of t he  inner circle ( t h e  s h a f t )  o r b i t s  

about t h e  center  of t he  outer  circle. 

observer sees the  inner  circle ro t a t ing  a t  a constant angular ve loc i ty  

about i t s  center  which is  a l s o  fixed in space while t h e  ou te r  circle 

remains s t a t iona ry .  

cen ter  of t h e  inner  circle while i t  o r b i t s  t he  center  of t h e  ou te r  

c i r c l e .  To t h e  observer it appears t h a t  t he  inner  circle is f ixed  

and t h e  ou te r  circle is ro t a t ing  in the  opposite d i r e c t i o n  with 

constant angular ve loc i ty .  

p a r t i c u l a r  example of f u l l  frequency whirl. 

I n  the  f i r s t  case, a space-fixed 

I n  t h e  second case, t h e  observer sits on t h e  

The la t ter  case may be in t e rp re t ed  as a 

The momentum equations for the space fixed and body fixed 

observers d i f f e r  by t h e  addi t ion  of apparent fo rce  terms in t h e  lat ter 

case. However, t h e  governing equation f o r  t he  stream funct ion  is  

the  same i n  both cases, 

d i r e c t l y  i n  terms of the  stream function. 

for  t h e  two cases is  

* 
and i t  w i l l  be most convenient t o  work 

The governing equation 

where ? is t h e  usua l  two-dimensional Laplacian opera tor  i n  polar 

COOrdinateS and 7 is defined such t h a t  

* 
This is e a s i l y  seen by taking the  c u r l  of t h e  apparent forces .  
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and 

- 
(Equation (1) and t h e  d e f i n i t i o n  of 

incompressible and has constant viscosity.)  

i n  the two cases are: 

I imply t h a t  t h e  f l u i d  is 

The boundary conditions 

Case I - 
- 

- 0  'r 

Vo - w r l  

a t  t h e  inner  circle - 

a t  the  ou te r  circle - v, - 0 

Case I1 

a t  the  Inner circle 

at the  ou te r  circle - 

The c y l i n d r i c a l  system, although conventional, I s  not  a 

convenient coordinate system i n  which t o  treat t h e  problem because the  
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boundary conditions must be enforced on curves which are not 

coordinate l i n e s .  A more convenient system, i n  which the  two circles 

do appear as coordinate l i n e s ,  is achieved by the  conformal trans- 

f ormat i on  

reie + r1(6 - t) 
6reie + r l ( l  - se) 

pei6 = 

where 

In the p,$  system t h e  Inner circle transforms i n t o  t h e  coordinate 

curve p = 1 and the  ou te r  circle transforms i n t o  t h e  curve 

p - B where 

This type of transformation has previously been used i n  similar 

problems by Wannier'") , Wood (12) and Segel (13) . 
A stream function, JI , can a l s o  be introduced i n  t h e  p , 4  

system. It is r e l a t e d  t o  Y by the equation 

where ? is the  two-dimensional Laplacian opera tor  i n  t h e  r , 8  

system, V2 is t h e  two-dimensional Laplacian opera tor  i n  t h e  p,+ 

and is the  Jacobian of t he  coordinate transformation, 
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The ve loc i ty  components i n  the  p and 4 d i r e c t i o n s  respec t ive ly  

are 

and 

JI 
I f  we non-dimensionalize by l e t t i n g  

- 
t - u t ;  

- 
J - J/r: ; 

Equation (1) can be rewr i t ten  as 

I 

where Re P rp/v a The boundary conditions on 11, are: 

Case I 

~~ * 
While it is phys ica l ly  c l e a r  t h a t  5 and '3 are c o r r e c t l y  

sca led  by u and r2 a t i m e  s ca l e  connected w i t h  v would probably be 
more appropr ia te  for': 
is of no e lgnl f icance  in t he  present ana lys i s .  

However, i t  tu rns  out t h a t  t he  scale for t 
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Now t h a t  the boundary value problem has beep formulated, t he  

next s t e p  is t o  motivate t h e  per turbat ion scheme. F i r s t ,  we note  t h a t  

6 

clearance,  and r2/r1 are the  only geometric parameters appearing i n  

the problem ( 6  

appearance of (r2/rl)  

( f ixed e c c e n t r i c i t y  and ro t a t ing  eccent r ic i ty)  simultaneously, and i t  

, which is e s s e n t i a l l y  the  r a t i o  of e c c e n t r i c i t y  t o  r a d i a l  

through the  Jacobian). The only reason f o r  the  

is t he  d e s i r e  f o r  t r e a t i n g  t h e  t w o  cases 

can be eliminated by using r2 ra ther  than rl as t h e  length scale 

f o r  t he  case with ro t a t ing  eccent r ic i ty .  Therefore, t h e  appearance 

of r2/rl is somewhat a r t i f i c i a l .  However, 6 is an important 

geometric parameter which character izes  the  problem being considered. 

I f  t he  e c c e n t r i c i t y  goes t o  zero, 6 = 0 , J = 1 , and the  problem 

reduces to  that,  of ro t a t ing  Couette flow. Moreover, i f  6 # 0 but  

6 << 1 , Equation (7) and the  boundary condi t ions are not  q u i t e  

s a t i s f i e d  by the  Couette so lu t ions  because J and J 'I2 depart  from 

unity by terms of order  6 . Therefore, i f  t h e  governing equation 

and boundary condi t ions f o r  

6 

lowest-order problem. 

J, are expanded and ordered i n  powers of 

, t h e  so lu t ion  f o r  ro t a t ing  Couette flow w i l l  c l e a r l y  s a t i s f y  the  

This ind ica tes  t h e  f e a s i b i l i t y  of attempting 

I 
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a so lu t ion  of t he  form 

fo r  s u f f i c i e n t l y  small 6 The JIn are assumed t o  be of u n i t  

o rder ,  and $, i s  the  well-known stream funct ion  f o r  r o t a t i n g  

Couette flow, 

where 

Case I -- fixed e c c e n t r i c i t y  

A 1/2(B2 - 1) ; B = - S 2 / ( S 2  - 1) 

Case I1 -- ro t a t ing  e c c e n t r i c i t y  

I n  t h e  standard way then, Equation (8) is s u b s t i t u t e d  i n t o  Equation 

(7), t he  r e s u l t i n g  d i f f e r e n t i a l  equation and boundary condi t ions  

are expanded in powers of 6 , and the  c o e f f i c i e n t s  of 6,62,. . . 
are Indiv idua l ly  set equal t o  zero. Consequently, t h e  following 

sequence of l i n e a r  boundary value problems is obtained. 

O(6) 

- - --- 1 ' $ 0  a (V22$1 - 16Ap cos 0 )  = E 1 V2V2$l 

a t  o ap a +  (98) 



- 14 - 

Case I 

Case I1 

1 - V2(V2+2 - 4p COS 4 V2$1 + 8Ap2 COB 20) + Re 

Case I 

21 = - 2 cos 24 
ap 9 - 1  
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Case I1 --- 

.Ob*.. 
0(63) 

I n  the  following w e  s h a l l  confine our a t t e n t i o n  t o  the  f i r s t -  

o rder  problem, i.e. the  boundary value problem f o r  

ve loc i ty  p r o f i l e s  corresponding t o  JI provide the  most s ign i f i can t  
$, s 

The 

1 
devia t ion  from JIo . Thus, the e f f e c t  of the  Reynolds number on $, 

w i l l  be the  most important. The per turbat ion v e l o c i t i e s  corresponding 

t o  512A3." are of higher order  In 6 and are pr imari ly  of i n t e r e s t  

i n  studying the  per turba t ion  scheme i t s e l f .  

A t  t h i s  po in t  the  d e t a i l s  of t he  ana lys i s  of t he  two cases 

d i f f e r  s u f f i c i e n t l y  t o  make separate  considerat ions advisable.  

w i l l  be reuni ted,  however, f o r  discussion of t he  quasi-steady 

assumption. 

They 

Case I -- Fixed Eccentr ic i ty:  

Since Equation (9a) is l inea r  and the  boundary condi t ions for 

$l are independent of t i m e ,  $, can be represented as a sum of 

two terms , 
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where F satisfies the equation 

1 - - - -  I. a'' a (V2F - 16Ap cos 0) = ~e V2V2F 
P aP 34  

and the boundary conditions 

and G satisfies the equation 

and a set of homogeneous boundary conditions. 

The boundary value problem for G has a simple physical 

interpretation. The eigensolutions for G correspond to the possible 

infinitesimal circumferential waves or Tollmien-Schlicting disturbances 

in rotating Couette flow. The neutral boundary for circumferential 

waves was investigated by Tamaki and Harrison (14) and Harrison (15) 

before Taylor ' s (la) original work on the vortex regime was published, 
and more recent work on the circumferential waves has been done by 

DiPrima (17) and DiPrima and Stuart(18). The latter investigations 

permit the simultaneous existence of the vortex modes, for it is 

now well known that the critical Reynolds number for Circumferential 

disturbances I s  greater than the critical Reynolds number for Taylor 
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vor t i ces .  

less than the  c r i t i c a l  value f o r  Taylor vo r t i ce s ,  the  e igensolu t ions  

f o r  G 

on the  present  steady-flow problem. Therefore, G w i l l  be neglected 

a l toge ther .  

Since the present  ana lys i s  is r e s t r i c t e d  t o  Reynolds numbers 

w i l l  a l l  contain damping f ac tp r s  and have l i t t l e  inf luence 

A most s i g n i f i c a n t  f ea tu re  of l ub r i ca t ion  problems has not  

y e t  been incorporated i n t o  t h e  boundary value problem f o r  F . That 

I s ,  the  thinness  of the lubr icant  f i lm has not  been introduced y e t .  

This can be done formally by introducing the  new va r i ab le s  

and the  modified Reynolds number 

* 
Re - A2Re 

The cor rec t  l ub r i ca t ion  approximation t o  Equation (10) is e a s i l y  

deduced by s u b s t i t u t i n g  x,y and rl i n t o  Equation (10) and then 

r e t a in ing  only the  lowest order  terms as A -+ 0 This corresponds 

t o  t h e  f ami l i a r  small  gap l i m i t  i n  ro t a t ing  Couette flow s t a b i l i t y  

analyses.  The r e s u l t i n g  equation and boundary condi t ions on rl are 

a 1 a40 
ax ay (1 - y) - [T - 2 cos X I  - *ay” R e  
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Equation (11) and the boundary conditions on TI at y = 0,l 

constitute the boundary value problem we will solve. 

procedure is first to rewrite Equation (11) as a homogeneous equation 

The simplest 

in terms of the variable y = TI - y2 cos x 

Equation (12) admits solutions of the form y = eixf(y) . 
we arrive at a fourth-order ordinary differential equation for 

Consequently, 

i , 

(1:) 
* 

fIV - iRe (1 - y)ftt - 0 

where f is a complex function of y, ( f (y)  = fR(y) + ifI(y)) . 
Equation (13) is then rewritten in terms of thc variables 

4 = (1 - ~)Re*l'~ and g(6) = f (y)  

* 
to remove the parameter Re . Equation (14) is a Bessel's equation 

for g" , and the general solution for g" can be written down 

directly. The most convenient representation is 

where 
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OD n v+2n 

npo 

is the standard Bessel function of the first kind. 

can be rewritten as 

Equation (15) 

OD OD 

+ c2 1 3n+l 
n=o 

g" E 

n-o 

where 

and 

and 

where 
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and 

W 

u z ( & )  5 1 Bn&3n+2/(3n + 1)(3n + 2) . 
n=o 

The boundary conditions on g(6) , obtained from the 
conditions on TI , are that 

It should be borne i n  mind that g and g' are complex functions, 

and the boundary conditions on 

on the velocities, Therefore, the boundary conditions on g and g' 

are such that only the real parts of 

conditions,. 

n are derived from physical restrictions 

TI need satisfy the boundary 

The four constants, C1, C t ,  C3 and C4 must now be 

determined by satisfying the boundary conditions on 

at,  B1 and e2 are all zero at 5 - 0 , C3 and C4 can be written 

g .. Since al, 

down imediately, 

= 
c3 

2 - *1/3 ' Re 
c4 - 1 

The remaining two constan-s are to be de ermined by solving the 

following pair of simultaneous equations 
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C1a1(Re*1/3) + C2a2(Re *1/3) = 1 

C2, g(S) and g'(S) have been numerically determined c1 , 
* 2 f o r  Re = 1, 10, 10 . Rather than merely l i s t i n g  

g(C) and g ' ( 0  though, it is more meaningful t o  rearrange t h e  r e s u l t s  

i n t o  a form t h a t  can be more r ead i ly  in te rpre ted .  

r e tu rn  to  the  ve loc i ty  components, u and . By d e f i n i t i o n  

For t h i s  purpose we 
- 

+ e . . ]  
aJ12 + 62 - a% 
a4 

6 -  
a6 

and 

and t o  first order In  6 

and 



.. 
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By introducing t h e  lub r i ca t ion  approximation next, which r e t a i n s  

only t h e  lowest order terms i n  A , t h i s  reduces t o  

2 - 
u % 2wr1A6 2 ax - 2wrlAd[(gR(S) - (1 - ) s i n  x + 

and 

* 
Again, the  only rest r ic t ion on Re in Equations (21) and (22) i e  

t ha t  i t  be less than t h e  c r i t i ca l  value f o r  Taylor vo r t i ce s .  

bracketed terms i n  Equations (21) and (22) are t h e  lowest order  

The 

e c c e n t r i c i t y  per turba t ion  v e l o c i t i e s  wi th in  t h e  lub r i ca t ion  approxi- 

mation, and the  leading term i n  Equation (22) is  simply t h e  l u b r i c a t i o n  

approximation t o  t h e  r o t a t i n g  Couette flow p r o f i l e .  Only t h e  

bracketed terms are of interest t o  us. Figures 2 through 5 show curves 

and Re*1’3g;( E) versus 

as a parameter. 

with t h e  modified Reynolds number 

Case XI -- Rotating Eccent r ic i ty  

The procedure f o r  obtaining so lu t ions  for  Case I f  is analogous 

t o  Case I, and we need only sketch out t he  s t eps .  IJe first set 
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$1 - H ( P , $ )  + I(P,@,~) 

where H satisfies the equation 

1 ---- .I a'' a (V2H -' 16Ap cos 4) - - Re V2V2H 
P ap a+ 

and the boundary conditions, 

I corresponds to G and need not be discussed. By introducing 

the lubrication scaling 

and an analogous set of substitutions for H , 

H - 2A(e-lxh(y) + y2 cos x) 

and 

we get an equation identical to (14) 

k*" - itk" = 0 
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Clearly then 

and 

k(G) E D1al(S) + D2a2(c) + D3S + D4 

The boundary conditions on k(g) are 

k(O) 0 ; k(Re*li3) - 1 

k'(0) 0 ; k'(Re*ll3) I Re *-1/ 3 

from the boundary conditions at  c = 0 that 

D3 = D4 = 0 

and from the remaining two boundary conditions we ge t  the simultaneous 

equations 

*1/3) I 1 (27) 
D1al(Re *1/3 + D2a2(Re 

D181(Re*1/3) + D28,(Re *lI3) I Re *-1'3 (28) 

By comparing Case I and Case I1 we see that 

- Dl and C2 = D2 

and therefore, 

. '. 
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and 

If we now go through similar s t e p s  t o ' o b t a i n  v e l o c i t y  components, w e  

f i n d  t h a t  

*-213 2 - 
u S 2wrlbb[($(c) - Re 5 ) s i n  x + kI(c) cos x] (31) 

and 

*1/3 Re*-1/3~)cos x + Re k;(c) s i n  x] 

*-2/3 2 The terms of interest then are ($(t) - R e  c ), kI(c), 

Comparison of Cases I and 11 

The main idea  of t h i s  s ec t ion  is to compare t h e  v e l o c i t y  

components f o r  Cases I and 11, thereby checking t h e  quasi-steady 

assumption t o  within the  order of our approximation. Equations (29) 

and (30) t e l l  us t h a t  t he  imaginary p a r t s  of 8 and k and t h e  

imaginary p a r t s  of g' and k' are i d e n t i c a l .  Therefore, t h e  

term mul t ip l ied  by cos x and 5 term mul t ip l i ed  by s i n  x are 

funct iona l ly  t h e  same for both f ixed  and r o t a t i n g  e c c e n t r i c i t y .  

Furthermore, by use of Equation (29) we f i n d  t h a t  
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and by use of Equation (30) we f ind  tha t  

Therefore, t he  component multiplied by s i n  x and component 

mul t ip l ied  by 

This means t h a t  t h e  quasi-steady assumption is  v a l i d  within t h e  t h i n  

f i lm  and small e c c e n t r i c i t y  approximation. 

a l l  the  information f o r  Case I1 is already contained i n  f i g u r e s  2 

through 5 ,  

cos x are a l s o  func t iona l ly  the  same i n  both cases. 

Due t o  t h e  above r e s u l t s ,  

There- is one more s i g n i f i c a n t  point t o  be considered i n  comparing 

t h e  two cases. It was not  e x p l i c i t l y  s t a t e d ,  but t h e  arguments 

regarding the  func t ion  G 

applied t o  the  function I i n  t h e  ro t a t ing  e c c e n t r i c i t y  case. This 

means t h a t  t h e  r o t a t i n g  observer i n  Case 11 is no more l i k e l y  t o  see 

time dependent motions than the  space f ixed  observer i n  Case I. The 

main influence of t he  o s c i l l a t i n g  boundary (Case I1 as seen by a space 

f ixed  observer) must be connected w i t h  t h e  way i n  which d i s tu rbances  

propagate i n  a flow which is i t s e l f  periodic. 

in the  fixed e c c e n t r i c i t y  case can a l s o  be 

DISCUSSION 

I n  t h i s  s ec t ion  w e  s h a l l  i n t e r p r e t  t h e  r e s u l t s .  To do t h i s  

meaningfully i t  should always be borne i n  mind t h a t  t h e  main o b j e c t i v e  

is to  determine the  changes t h a t  take p lace  i n  t h e  v e l o c i t y  p r o f i l e s  

as t h e  modified Reynolds number o r  global level of inertia is increased. 
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To make the in t e rp re t a t ion  somewhat c l e a r e r  we will begin by 

obtaining the  small e c c e n t r i c i t y  per turba t ion  p r o f i l e s  within the  

c l a s s i c a l  l ub r i ca t ion  l i m i t ,  i.e. Re << 1 . Equation (11) for t he  

l imi t ing  case Re * 0 is 

* 
* 

* 
where 7 denotes the  l i m i t  of n as Re + 0 . The boundary 

condi t ions on n are: 
w 

and 

h. 

q = const - cos x y ( 1  - y)2 

Subs t i t u t ing  7 
p r o f i l e s  we get 

i n t o  the  equations f o r  the approximate ve loc i ty  

and 

The so lu t ion  f o r  is 
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as the  c l a s s i c a l  l i m i t .  

The ve loc i ty  p r o f i l e s  i n  t h e  classical l i m i t  p r ed ic t  a r a d i a l  

per turba t ion  proportional t o  s i n  x and a c i rcumferent ia l  perturba- 

t i o n  propor t iona l  t o  cos x . Since x = 0 and x - II coincide 

respec t ive ly  with po in t s  of minimum and maximum f i lm  thickness and 

x - n/2 and x = 3n/2 coincide w i t h  po in ts  at which t h e  f i lm  

thickness is changing most rapidly,  the per turba t ion  p r o f i l e s  i n  t h e  

classical l i m i t  can be viewed a8 being "in-phase" with t h e  f i lm  

thickness. Another way of s t a t i n g  t h i s  is t h a t  t h e  classical 

per turba t ion  p r o f i l e s  are "in-phase" with the  d i s t o r t i o n  of t h e  

boundaries from .axial symmetry. 

classical per turba t ion  p r o f i l e s  coincide with the  curves f o r  R e  = 

For a l l  p r a c t i c a l  purposes t h e  
* 

i n  f i g u r e s  2 and 4. 

R e  = 

For t h a t  matter, they a l s o  coincide with t h e  
* 

curves i n  f igu res  3 and 5 ,  because t h e  r a d i a l  component 

propor t iona l  to  cos x and the  c i rcumferent ia l  component propor t iona l  

t o  s i n  x vanish as the  modified Reynolds number takes  on c l a s s i c a l l y  

small values. 

as components "in-phase" with t h e  boundary d i s t o r t i o n ,  then t h e  

I f  the  curves i n  f igures  2 and 4 are t o  be i n t e r p r e t e d  

curves i n  f igu res  3 and 5 can be in t e rp re t ed  as components with a 

90' phase s h i f t  o r  "out-of-phase'' components. 

Now le t  us consider t h e  parametric changes i n  t h e  p r o f i l e s .  

F i r s t ,  we note t h a t  t he  "in-phase" components i n  f igu res  2 and 4 

r e t a i n  t h e i r  genera l  shape and exh ib i t  a t  most a 20% dev ia t ion  i n  

magnitude from R e  - t o  Re = 10 . I n  sho r t ,  t h e  "in-phase" * * 2 

components are r a t h e r  i n s e n s i t i v e  t o  the  l e v e l  of i n e r t i a .  However, 
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t h i s  is not so f o r  t he  "out-of-phase" components. 

growth of t he  "out-of-phase" components rap id  a f t e r  R e  exceeds 

uni ty ,  but t he  magnitude of t he  "out-of-phase" components becomes 

a s i g n i f i c a n t  f r a c t i o n  of t he  "in-phase" magnitudes f o r  > 10. 

Therefore, t h e  most s i g n i f i c a n t  phenomena accompanying an increase  

i n  R e  pas t  un i ty  are t h e  appearance and rap id  growth of v e l o c i t y  

components which are 90" out-of-phase with t h e  geometry of the phys ica l  

flow region. 

Not only is t h e  
* 

* 
R e  

* 

Admitting t h e  ex is tence  and the  rapid growth of t h e  "out-of-phase" 

components, what are the  consequences? F i r s t ,  t h e  c i rcumferent ia l  

pressure d i s t r i b u t i o n  i n  t h e  lubr icant  f i l m  is primarily dependent 

on the  e c c e n t r i c i t y  per turba t ion  of the  c i rcumferent ia l  v e l o c i t y  

component. Therefore, t h e  c i rcumferent ia l  p ressure  d i s t r i b u t i o n  w i l l  

e x h i b i t  a rap id  change i n  shape as Re exceeds unity.  If the 
* 

c i rcumferent ia l  pressure d i s t r i b u t i o n  changes shape, t h e  load vec tor  

of the  bearing w i l l  change d i r ec t ion  and t h e  bearing a t t i t u d e  angle 

w i l l  change. Secondly, t he  existence of t h e  "out-of-phase" components 

influences the  s t a b i l i t y  of t h e  lubr icant  flow. Bowever, t h e  

importance of t h e  phase s h i f t  i n  s t a b i l i t y  cons idera t ions  must be 

l e f t  f o r  t he  fu tu re  because t h e  e n t i r e  problem of flow s t a b i l i t y  f o r  

Reynolds numbers near t h e  Taylor boundary has only been approached 

fram a r a t h e r  q u a l i t a t i v e  standpoint (5*6) .  Therefore, since a t t i t u d e  

angle s t rongly  influences r o t o r  s t a b i l i t y  and phase r e l a t i o n s  between 

. .  ... . 

ve loc i ty  components has a s t rong  influence on hydrodynamic s t a b i l i t y ,  
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t he  "out-of-phase" components are pr imari ly  of importance i n  s t a b i l i t y  

considerat ions.  How much importance has ye t  t o  be determined. 

CONCLUSIONS 

Within the  l i m i t s  of v a l i d i t y  of t he  assumptions t h a t  the  

e c c e n t r i c i t y  is small and the  unperturbed flow is  simply r o t a t i n g  

Couet te  flow, t h e  following conclusions may be drawn. 

(1) Shaft  o rb i t i ng  does not  have a profound e f f e c t  on the  

f l u i d  mechanic behavior of the  lubricant  f i lm. 

(2) The most s i g n i f i c a n t  changes i n  the  ve loc i ty  p r o f i l e s  

associated with increasing values of the  modified Reynolds number 

(but s t i l l  less than the  c r i t i c a l  value f o r  Taylor vo r t i ce s )  is  

the  ex is tence  of components which are 90' out-of-phase with the  

f i lm thickness.  

(3) The major consequences of the  "out-of-phase" components 

are y e t  t o  be determined. 

be important i n  considerations of sha f t  and rotor dynamics and t h e  

fluid-dynamic s t a b i l i t y  of the lubricant  f i lm. 

However, i t  is an t i c ipa t ed  t h a t t h e y  w i l l  

The conclusions of the  present ana lys i s  i nd ica t e  the  need 

f o r  f u t u r e  work i n  two d i rec t ions .  F i r s t ,  r o t o r  dynamic ca l cu la t ions  

should be ca r r i ed  out t o  determine the e f f e c t  of t h e  "out-of-phase" 

ve loc i ty  components on ro to r  s t a b i l i t y .  Secondly, t he  hydrodynamic 

s t a b i l i t y  of the  lubr icant  f i lm  near the  Taylor boundary s h o u l '  tie 

invest igated using a t  least the  f i r s t  order  per turba t ion  profiic:; .  

The second t a sk  w i l l  be much more d i f f i c u l t  than the  f i r s t .  
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